sábado, 10 de febrero de 2018

el big bang


La teoría del Big Bang (también llamada Gran explosiónnota ​) es el modelo cosmológico predominante para los períodos conocidos más antiguos del universo y su posterior evolución a gran escala. Afirma que el universo estaba en un estado de muy alta densidad y luego se expandió. Si las leyes conocidas de la física se extrapolan más allá del punto donde son válidas, encontramos una singularidad. Mediciones modernas datan este momento aproximadamente 13 800 millones de años atrás, que sería por tanto la edad del universo.7​ Después de la expansión inicial, el universo se enfrió lo suficiente para permitir la formación de las partículas subatómicas y más tarde simples átomos. Nubes gigantes de estos elementos primordiales se unieron más tarde debido a la gravedad, para formar estrellas y galaxias. A mediados del siglo XX, tres astrofísicos británicos, Stephen Hawking, George F. R. Ellis y Roger Penrose, prestaron atención a la teoría de la relatividad y sus implicaciones respecto a nuestras nociones del tiempo. En 1968 y 1979 publicaron artículos en que extendieron la teoría de la relatividad general de Einstein para incluir las mediciones del tiempo y el espacio. De acuerdo con sus cálculos, el tiempo y el espacio tuvieron un inicio finito que corresponde al origen de la materia y la energía.

Desde que Georges Lemaître observó por primera vez, en 1927, que un universo en permanente expansión debería remontarse en el tiempo hasta un único punto de origen, los científicos se han basado en su idea de la expansión cósmica. Si bien la comunidad científica una vez estuvo dividida en partidarios de dos teorías diferentes sobre el universo en expansión, el Big Bang y la teoría del estado estacionario, la acumulación de evidencia observacional proporciona un fuerte apoyo para la primera.

En 1929, a partir del análisis de corrimiento al rojo de las galaxias, Edwin Hubble concluyó que las galaxias se estaban distanciando, una prueba observacional importante consistente con la hipótesis de un universo en expansión. En 1964 se descubrió la radiación de fondo cósmico de microondas, lo que es una prueba crucial en favor del modelo del Big Bang, ya que esta teoría predijo la existencia de la radiación de fondo en todo el universo antes de ser descubierta. Más recientemente, las mediciones del corrimiento al rojo de las supernovas indican que la expansión del universo se está acelerando, observación atribuida a la energía oscura. Las leyes físicas conocidas de la naturaleza pueden utilizarse para calcular las características en detalle del universo del pasado en un estado inicial de extrema densidad y temperatura.

La expresión big bang proviene del astrofísico inglés Fred Hoyle, uno de los detractores de esta teoría y, a su vez, uno de los principales defensores de la teoría del estado estacionario, quien dijo, para explicar mejor el fenómeno, que el modelo descrito era simplemente un big bang (gran explosión). En el inicio del universo ni hubo explosión ni fue grande, pues en rigor surgió de una «singularidad» infinitamente pequeña, seguida de la expansión del propio espacio.16​ Recientes ingenios espaciales puestos en órbita (COBE) han conseguido observar evidencias de la expansión primigenia.

La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y homogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del universo antes o después en el tiempo.

Una consecuencia de todos los modelos de big bang es que, en el pasado, el universo tenía una temperatura más alta y mayor densidad y, por tanto, las condiciones del actual son muy diferentes de las condiciones del universo en el pasado. A partir de este modelo, George Gamow en 1948 predecía que habría evidencias de un fenómeno que más tarde sería bautizado como radiación de fondo de microondas.

Base teórica

En su forma actual, la teoría del Big Bang depende de tres suposiciones:

La universalidad de las leyes de la física, en particular de la teoría de la relatividad general
El principio cosmológico
El principio de Copérnico

Inicialmente, estas tres ideas fueron tomadas como postulados, pero actualmente se intenta verificar cada una de ellas. La universalidad de las leyes de la física ha sido verificada al nivel de las más grandes constantes físicas, llevando su margen de error hasta el orden de 10 ..5. La isotropía del universo que define el principio cosmológico ha sido verificada hasta un orden de 10 ..5. Actualmente se intenta verificar el principio de Copérnico observando la interacción entre grupos de galaxias y el CMB por medio del efecto Siunyáiev-Zeldóvich con un nivel de exactitud del 1 por ciento.

La teoría del Big Bang utiliza el postulado de Weyl para medir sin ambigüedad el tiempo en cualquier momento en el pasado a partir del la época de Planck. Las medidas en este sistema dependen de coordenadas conformales, en las cuales las llamadas distancias codesplazantes y los tiempos conformales permiten no considerar la expansión del universo para las medidas de espacio-tiempo. En ese sistema de coordenadas, los objetos que se mueven con el flujo cosmológico mantienen siempre la misma distancia codesplazante, y el horizonte o límite del universo se fija por el tiempo codesplazante.

Visto así, el Big Bang no es una explosión de materia que se aleja para llenar un universo vacío; es el espacio-tiempo el que se extiende. Y es su expansión la que causa el incremento de la distancia física entre dos puntos fijos en nuestro universo. Cuando los objetos están ligados entre ellos (por ejemplo, por una galaxia), no se alejan con la expansión del espacio-tiempo, debido a que se asume que las leyes de la física que los gobiernan son uniformes e independientes del espacio métrico. Más aún, la expansión del universo en las escalas actuales locales es tan pequeña que cualquier dependencia de las leyes de la física en la expansión no sería medible con las técnicas actuales.

Evidencias

En general, se consideran tres las evidencias empíricas que apoyan la teoría cosmológica del Big Bang. Estas son: la expansión del universo que se expresa en la ley de Hubble y que se puede apreciar en el corrimiento hacia el rojo de las galaxias, las medidas detalladas del fondo cósmico de microondas, y la abundancia de elementos ligeros. Además, la función de correlación de la estructura a gran escala del universo encaja con la teoría del Big Bang.

Expansión expresada en la ley de Hubble
Artículo principal: Ley de Hubble

De la observación de galaxias y quasares lejanos se desprende la idea de que estos objetos experimentan un corrimiento hacia el rojo, lo que quiere decir que la luz que emiten se ha desplazado proporcionalmente hacia longitudes de onda más largas. Esto se comprueba tomando el espectro de los objetos y comparando, después, el patrón espectroscópico de las líneas de emisión o absorción correspondientes a átomos de los elementos que interactúan con la radiación. En este análisis se puede apreciar cierto corrimiento hacia el rojo, lo que se explica por una velocidad recesional correspondiente al efecto Doppler en la radiación. Al representar estas velocidades recesionales frente a las distancias respecto a los objetos, se observa que guardan una relación lineal, conocida como ley de Hubble:

v = H 0 ⋅ D

donde v v es la velocidad recesional, D es la distancia al objeto y H 0 es la constante de Hubble, que el satélite WMAP estimó en 71 ± 4 km/s/Mpc.

Radiación cósmica de fondo

Una de las predicciones de la teoría del Big Bang es la existencia de la radiación cósmica de fondo, radiación de fondo de microondas o CMB (Cosmic microwave background). El universo temprano, debido a su alta temperatura, se habría llenado de luz emitida por sus otros componentes. Mientras el universo se enfriaba debido a la expansión, su temperatura habría caído por debajo de 3000 K. Por encima de esta temperatura, los electrones y protones están separados, haciendo el universo opaco a la luz. Por debajo de los 3000 K se forman los átomos, permitiendo el paso de la luz a través del gas del universo. Esto es lo que se conoce como disociación de fotones.

La radiación en este momento habría tenido el espectro del cuerpo negro y habría viajado libremente durante el resto de vida del universo, sufriendo un corrimiento hacia el rojo como consecuencia de la expansión de Hubble. Esto hace variar el espectro del cuerpo negro de 3345 K a un espectro del cuerpo negro con una temperatura mucho menor. La radiación, vista desde cualquier punto del universo, parecerá provenir de todas las direcciones en el espacio.

En 1965, Arno Penzias y Robert Wilson, mientras desarrollaban una serie de observaciones de diagnóstico con un receptor de microondas propiedad de los Laboratorios Bell, descubrieron la radiación cósmica de fondo. Ello proporcionó una confirmación sustancial de las predicciones generales respecto al CMB la radiación resultó ser isótropa y constante, con un espectro del cuerpo negro de cerca de 3 K e inclinó la balanza hacia la hipótesis del Big Bang. Penzias y Wilson recibieron el Premio Nobel por su descubrimiento.

En 1989, la NASA lanzó el COBE (COsmic Background Explorer) y los resultados iniciales, proporcionados en 1990, fueron consistentes con las predicciones generales de la teoría del Big Bang acerca de la CMB. El COBE halló una temperatura residual de 2726 K, y determinó que el CMB era isótropo en torno a una de cada 105 partes. Durante la década de los 90 se investigó más extensamente la anisotropía en el CMB mediante un gran número de experimentos en tierra y, midiendo la distancia angular media (la distancia en el cielo) de las anisotropías, se vio que el universo era geométricamente plano.

A principios de 2003 se dieron a conocer los resultados de la Sonda Wilkinson de Anisotropías del fondo de Microondas (en inglés Wilkinson Microwave Anisotropy Probe o WMAP), mejorando los que hasta entonces eran los valores más precisos de algunos parámetros cosmológicos. (Véase también experimentos sobre el fondo cósmico de microondas). Este satélite también refutó varios modelos inflacionistas específicos, pero los resultados eran constantes con la teoría de la inflación en general.

Abundancia de elementos primordiales

Se puede calcular, usando la teoría del Big Bang, la concentración de helio 4, helio 3, deuterio y litio 7.1 en el universo como proporciones con respecto a la cantidad de hidrógeno normal, H. Todas las abundancias dependen de un solo parámetro: la razón entre fotones y bariones, que por su parte puede calcularse independientemente a partir de la estructura detallada de la radiación cósmica de fondo. Las proporciones predichas (en masa, no volumen) son de cerca de 0,25 para la razón 4He/H, alrededor de 10 ..3 para 2He/H, y alrededor de 10 ..4 para 3He/H.

Estas abundancias medidas concuerdan, al menos aproximadamente, con las predichas a partir de un valor determinado de la razón de bariones a fotones, y se considera una prueba sólida en favor del Big Bang, ya que esta teoría es una de las únicas explicaciones para la abundancia relativa de elementos ligeros. Otro modelo que permite deducir la relación actual entre el número de fotones y el número de bariones, en buen acuerdo con los datos experimentales, y solamente en función de las tres constantes universales: la constante de Planck "h", la velocidad de la luz en el vacío "c" y la constante de gravitación "k", es el modelo cosmológico de Ilya Prigogine[ ].

Evolución y distribución galáctica

Las observaciones detalladas de la morfología y estructura de las galaxias y cuásares proporcionan una fuerte evidencia del Big Bang. La combinación de las observaciones con la teoría sugiere que los primeros cuásares y galaxias se formaron alrededor de mil millones de años después del Big Bang, y desde ese momento se han estado formando estructuras más grandes, como los cúmulos de galaxias y los supercúmulos. Las poblaciones de estrellas han ido envejeciendo y evolucionando, de modo que las galaxias lejanas (que se observan tal y como eran en el principio del universo) son muy diferentes a las galaxias cercanas (que se observan en un estado más reciente). Por otro lado, las galaxias formadas hace relativamente poco son muy diferentes de las galaxias que se formaron a distancias similares pero poco después del Big Bang. Estas observaciones son argumentos sólidos en contra de la teoría del estado estacionario. Las observaciones de la formación estelar, la distribución de cuásares y galaxias, y las estructuras más grandes concuerdan con las simulaciones obtenidas sobre la formación de la estructura en el universo a partir del Big Bang, y están ayudando a completar detalles de la teoría.

Otras evidencias

Después de cierta controversia, la edad del universo estimada por la expansión Hubble y la CMB (Radiación cósmica de fondo) concuerda en gran medida (es decir, ligeramente más grande) con las edades de las estrellas más viejas, ambos medidos aplicando la teoría de la evolución estelar de los cúmulos globulares y a través de la fecha radiométrica individual en las estrellas de la segunda Población.

No hay comentarios:

Publicar un comentario

Diversidad Galáctica

NGC 3175 se encuentra a unos 50 millones de años luz de distancia en la constelación de  Antlia (The Air Pump)  .  La galaxia se puede v...